lan Scott, ZL4NJ

arb.xfm@gmail.com

10 August 2016

Version 1.01

Presentation in Three Chapters

- Transistor History The Road To Silicon 15 min
- BJT Electrical Characteristics 35 min
- Strange and Unusual BJT Circuits 10 min

Ambitious time-plan – strict 60 minute allocation limit Short questions OK – best confined to chapter 2 Additional 10 minute allocation for further questions at the presentation's end Presentation on CD available for takeaway – multiple formats – extra information

• <u>Transistor History – The Road To</u> <u>Silicon – 15 minutes</u>

Who were responsible for the transistors of today?

Transistor History – The Road To Silicon

John Bardeen, William Shockley and Walter Brattain at Bell Labs, 1948.

What did their first transistor look like?

BJT <u>Transistor History – The Road To Silicon</u>

- First Point Contact Germanium Transistor
- Replica of Original
- Invented by Shockley, Bardeen and Brattain
- Patented circa 1947
- But Ignored Shockley!
- Shockley was peeved

Note: The "Schottky diode" was not invented by Shockley but the "Shockley diode" was

Next – An patent excerpt from Bardeen and Brattain

Transistor History – The Road To Silicon

Excerpt from Patent Filed by John Bardeen & Walter Brattain and October 3, 1950, ignoring their lab leader William Shockley

But how well did it work?

<u>Transistor History – The Road To Silicon</u>

- Operated in "Common Base" Mode
- Current Amplification 2 ~ 3 times
- Voltage Amplification ~ 50 times
- Power Amplification 100 ~ 150 times
- Maximum Frequency ~ 1 MHz
- Very High Noise Floor, NF > 20 dB

Summary – poor by modern standards

Still, these were commercialized and enjoyed a short few years of use – by hobbyists!

BJT <u>Transistor History – The Road To Silicon</u>

- Point Contact Transistor Introduced by Bell Labs
- Commercial Release
 in 1949
- Competing junction transistor - theory starts in 1948 by William Shockley

Transistor History – The Road To Silicon

Early point contact transistor case styles

Even so, lots of point contact transistors were manufactured!

Until Shockley's revenge!

BJT <u>Transistor History – The Road To Silicon</u>

- First junction device April 12, 1950 not a pretty sight!
- William Shockley' revenge?
- Very slow speed
- Struggled even at audio!
- Morgan Sparks made significant speed improvements, January 1951 – capable of audio
- Bell announced functional, commercial design, July 1951
- The point contact transistor's dominant reign quickly ended

From such an ugly duckling, prettier things were born...

Transistor History – The Road To Silicon

- Early germanium junction transistor
- Fairly slow, audio types OC71, OC72, AC128
- Faster improvements occurred later
- OC44, FT < 15 MHz
- High Leakage Current
- Low Temperature < 70 C

But as if electrons weren't enough, what about photons?

Transistor History – The Road To Silicon

- Many transistor variants soon followed
- Even photo-transistors were considered

Early germanium photo-transistor

The Germanium Bipolar Junction Transistor (Ge-BJT) was an immediate success!

<u> Transistor History – The Road To Silicon</u>

Early junction transistor case styles

Efforts now began in earnest to make better, faster Ge-BJT devices...

Transistor History – The Road To Silicon

- Early germanium junction transistors were slow
- High frequency operation was limited to 5 ~ 15 MHz – e.g. 0C44, 0C45
- Bell Labs developed the first prototype diffusion (mesa) transistors in 1954
- Early versions had FT ~ 60 MHz
- Similar RF performance to surface barrier

Simple junction Ge-BJT devices were soon augmented with many exotic geometries

Transistor History – The Road To Silicon

1953 "Experimental" Philco Surface Barrier Transistor

"Experimental" Transistor

Philco Marked

Close-Up View Surface Barrier Transistor

Production Model Enlarged View

The transistor revolution now attacks the perennial stronghold of the American vacuum tube!

Transistor History – The Road To Silicon

Test circuit for power gain and noise figure at f = 800 MHz

- Useful frequency improvements soon followed
- Example AF239
- FT = 700 MHz
- 800 MHz RF Amplifier shown here operates above its FT!

The AF239 reached a pinnacle of Germanium BJT success – but what about Silicon?

Transistor History – The Road To Silicon

- Example AF239 "Output Characteristics"
- Seldom used now
- No RF Prediction
- Better Models
- "S-Parameter"
- "Equivalent Circuit"

Transistor History – The Road To Silicon

Germanium failed at high temperatures
People looked at Silicon instead
However purity was a major problem
Silicon purity problem solved in 1954

"Morris Tanenbaum et al. at Bell Laboratories [33] were the first to develop a working silicon transistor on January 26, 1954"

Transistor History – The Road To Silicon

Early Silicon Bipolar Junction Transistor (Si-BJT).

Achieved high temperature operation up to 175 C, but slow, very noisy

These copied the construction of early Ge-BJT. Could a better geometry be found?

<u>Transistor History – The Road To Silicon</u>

- Junction silicon types were still slow, FT ~ 1 MHz.
- Solved by using a "planar geometry"
- Invented by Physicist Jean Hoerni, January 1959
- Used photographic processing
- BC549, BC559 etc use this
- Transition frequency (FT) up to 300 MHz at 10 mA
- ← Planar Transistor Structure

First commercial planar transistor was the 2N1613 from Fairchild, April 1960. FT~60MHz, Ic < 500 mA

n

But where was the actual transistor in all this

Transistor History – The Road To Silicon

- Photographic processes provided accurate junctions.
- Thin base region improved FT and current amplification H_{FE}
- Active transistor is buried
- Parasitic resistances called R_{bb}, R_{ee} and R_{cc}
- BC549, BC559 "base spreading resistance" R_{bb} ~ 200 Ohms
- BC549 Transition frequency (FT) up to 300 MHz at I_c = 10 mA
- Planar Transistor DC Model

How could these parasitic resistances be reduced?

Transistor History – The Road To Silicon

Interdigitated BJT: Top and Cross-Sectional Views

Neamen

Need larger emitters for power amps. Designed differently.

Chapter 8-4

- Highest frequency limited to about FT ~ 1.2 GHz (e.g. BFY90, BFS17)
- Single transistor area too large high capacitance
- R_{bb} too high forms a low pass filter (LPF) with C_{be}
- Solution to place many smaller transistors in parallel -"interdigitated" multiple-emitter
- BFR90, BFR91, BFR92
- Upper frequency 5 GHz

How much better were such interdigitated devices?

Microelectronics, 4e

McGraw-Hill

Transistor History – The Road To Silicon

Guaranteed 440, 470, 512 MHz 12.5 Volt Characteristics Output Power = 50 Watts Minimum Gain = 5.2 dB @ 440, 470 MHz Efficiency = 55% @ 440, 470 MHz

- MRF650 Pinnacle of RF
 Power BJT Technology
- Extremely low power gain
- Needed carcinogenic beryllium oxide mount disk
- Expensive, inconsistent
- Obsoleted by Motorola' LDMOS about 10 years ago
- All major manufacturers withdrew R&D with 1 year
- RF Power BJT Only for Service

BJT Transistor History – The Road To Silicon

f	Z _{in}	Z _{OL} *	
(MHz)	Ω	Ω	
400	0.7 + j2.8	1.4 + j2.3	
440	0.7 + j3.2	1.1 + j2.6	
470	0.8 + j3.3	0.8 + j2.7	
512	0.8 + j3.2	0.7 + j2.9	
520	0.7 + j3.0	0.6 + j3.0	

- MRF650 Extremely low input and output impedances
- Impedances strongly frequency dependent (excessive match "Q")
- Zero bias operation (FM)
- Prone to parametric instability / VSWR / Temperature / Voltage / Drive Power / Poor Reproducibility

BJT <u>Transistor History – The Road To Silicon</u>

- Philips retained 5 GHz BJT for decades – no progress
- Motorola made small improvement with "arsenic implanted emitters" - MRF571, MMBR951
- FT improved to 8 GHz
- 18 finger 1.25 Micron
- Used in T800, T2000 series
- Power gain $|S_{21}|^2$ follows FT
- FT scale is linear, log (dB) $|S_{21}|^2$

But was 8 GHz really enough?

Transistor History – The Road To Silicon

8 GHz too slow! People considered "composite semiconductors" - Infineon, ex Philips, introduced first SiGe BJT, BFP620, FT ~ 60 GHz, \$US 1.00

Transition frequency $f_{\rm T}$ = $f(l_{\rm C})$

f = 1GHz

V_{CE} = Parameter in V

Power gain G_{ma} , $G_{ms} = f(I_C)$ $V_{CE} = 1.5 \vee$

f = Parameter in GHz

Composite semiconductors soon became the new black!

Transistor History – The Road To Silicon

- Composite semiconductors emerged
- Silicon Germanium SiGe very popular
- Many RFIC use SiGe e.g. WiFi
- Other composites also common now – e.g. Cree Gallium Nitride (GaN) microwave device

Transistor History – The Road To Silicon

We now have many varied transistor types

- Unijunction Transistor Relaxation Oscillator < 1 MHz largely obsolete</p>
- Silicon Controlled Rectifier (SCR) Very High Voltage / Current Mature, Popular
- TRIAC "Triode for AC" AC Switch Light Dimmers Mature, Popular
- Junction Field Effect Transistor (JFET) Seldom Used Eventual Obsolescence
- Metal Oxide Field Effect Transistor (MOSFET) Extremely Popular
- Insulated Gate Bipolar Transistor (IGBT) MOSFET + BJT Very Popular
- Lateral Diffused MOSFET (LDMOS) 1 GHz, 1 kW Mature Very Popular
- Metal Silicon FET (MESFET) Small Signal Microwave Loosing Favor
- Gallium Arsenide FET (GASFET) Class A, V_{ds} < 10V Loosing Favor
- Gallium Nitride High Electron Mobility Transistor (GaN HEMT) 6 20GHz, LNA and HPA 6GHz 350W – Receiving Extensive R&D – Increasing Popularity

Transistor History – The Road To Silicon

Collector Drift region Gate Parasitic Transistor Body region Emitter Equivalent circuit for IGBTS Insulated Gate Bipolar Transistor

MOSFET input, common collector PNP BJT Output

IXXK300N60B3

- Ex. 600 V 300 Amp
- Switch to 100 kHz
- Speeds approach

fast MOSFET

Perhaps 80m RFPA

<u>2. BJT Electrical Characteristics – 35</u> <u>minutes</u>

To understand these characteristics we first need to know how the BJT works!

This section will use explanations based on concepts and analogies with familiar items – not a I.E.E.E. document or PhD Thesis!

Unbiased Junction Diode Depletion Layer

• The BJT begins with the

diode junction

- Diodes Have connected "P"
 - and "N" junctions
- P Material has "holes"
- N Material has "electrons"

Switch open – no movement across the "depletion layer"

Close switch, current

flows, light glows!

+ Holes repelled

downwards by Vs+

Electrons repelled

upwards by Vs-

Charges combine in

the depletion layer

Switch closed – charges combine in the depletion layer

- Why does Electron-Hole (re)combination cause current flow?
- Explanation by simple analogy
- Consider a cloud-sea-leaky cave analogy

Bipolar Junction Transistor – BJT – 2 Junctions

Two versions – NPN and PNP

NPN Examples – BC549, 2N2222, BRY90, BFR91

PNP Examples – BC557, 2N2905, TIP42C, AD162

So how does the BJT work? - Use NPN as an example

Electrical Characteristics

• V_{be} attracts electrons

from the emitter

Most fly through the

thin P-Type Base

- V_{ce} attracts these as *Ic*
- Leakage holes form *I*_b
- *V*_{be} attracts these as

leakage electrons I_b

This "Physical Model Concept" has several "Electrical Model" interpretations

- Current Controlled Model uses "h parameters" suits audio
- Transconductance Model uses "y parameters" mid RF
- Scattering Model uses "s parameters" suits all
- All are equivalent and translations only require algebra

Static VI Characteristics, although interesting, are seldom if ever useful in BJT amplifier design. Therefore I will focus only on dynamic characteristics

S – parameters were originally developed by microwave engineers as BJT devices tended to be unstable in equipment used to measure h or yparameters (h_{ie} , h_{fe} , h_{re} , h_{oe} and y_{ie} , y_{fe} , y_{re} , y_{oe})

Electrical Characteristics

Example – 2N3904 Legacy NPN Audio BJT – h_{fe} , h_{re} , h_{ie} and h_{oe}

• h_{xx} – parameters - estimate

amplification potential

*h*_{fe} depends on temperature and

collector current I_c

Reciprocal of h_{re} indicates

maximum possible voltage gain

- h_{ie} falls as I_c increases
- *h*_{oe} indicates output resistance

BJT **Electrical Characteristics**

Cobo

100

100

Example – 2N3904 Legacy NPN Audio BJT – Frequency Behavior

- Transition frequency FT is
 - defined as $h_{fe} = 1$ (0 dB)
- FT is largely dependent on device base-emitter C_{ibo}
- Large signal switching times only loosely depend on FT
- Turn on time ton depends on *Ic* and *Vce*
- The BJT Achilles heal is "storage time" t
- Storage time t dominates

BJT *Electrical Characteristics*

Example – 2N3904 Legacy NPN Audio BJT – Noise Behavior

- All components introduce noise. BJT noise has an optimum for I_c and R_s
- Note another Achilles heal Flicker / shot noise increases at low frequencies with an excess rate approximately ¹/_r usually starting below 1 kHz

Electrical Characteristics

Electrical Characteristics

Electrical Characteristics

NPT2020 45 W 48 V DC–2.5 GHz HEMT \$151.29 Digikey NZ

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (48 ∨).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- Turn off V_{GS}.

High Electron Mobility Transistor -HEMT

- Depletion mode FET
- Must sequence bias
- Gallium Nitride GaN
- Available, f > 6 GHz
- Power up to 350 W
- Benign impedance
- Currently 2~3 \$/Watt

Load-Pull Performance: V_{DS} = 48 V, I_{DQ} = 350 mA, T_{C} = 25°C

Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Frequency (MHz)	Ζ _s (Ω)	Ζ _L (Ω)	P _{SAT} (W)	G _{SS} (dB)	Drain Efficiency @ P _{SAT} (%)
900	1.1 + j0.7	7.3 + j5.5	74	24	68
2000	1.4 - j6.1	2.9 + j2.4	65	17	68
2500	1.5 - j7.6	2.3 + j0.6	64	14	65

<u>3 Strange and Unusual BJT Circuits –</u> <u>10 minutes</u>

Strange and Unusual Transistor Circuits

Composite Bipolar Junction Transistors

- The familiar "Darlington" increases H_{FE} , input 2 x V_{be}
- The NPN-PNP alternative reduces the input V_{be}
- The NPN-PNP-PNP increases H_{FE} but drops 2 x V_{be}
- The NPN-PNP-NPN solves V_{be} and drops only 1 x V_{be}
- Resistors R_1 and R_2 improve turn-off time
- Resistor R_e may be needed to improve stability

Linear concerns on current gain – but can we exploit BJT non-linearity?

Strange and Unusual Transistor Circuits

Voltage to Logarithm of Voltage (dB) Converter

- Transistor Q2 converts $I_e \sim I_c$ to $K * Log_e(I_e)$
- Transistor Q3 removes temperature effect of Q2
- OpAmp X1+Q1 voltage to current conversion
- OpAmp X3+Q4 translate Vout to reference GND

Can we exploit transistor non-linearity to demodulate AM signals?

Strange and Unusual Transistor Circuits

Super Regenerative Detector - PNP BJT

Circuits of Super-Regenerative Single Tube Receiver.

- Invented by Edwin Armstrong
- Patented circa 1922 (Wikipedia)
- Used for simple receivers such as door openers
- Oscillations are "quenched"
 - from on to off RC time
 - constant R5, C6 determines f
- Sensitivity can reach 0.5 μ V

Let's see Edwin demonstrate his work!

BJT Strange and Unusual Transistor Circuits

- Edwin Armstrong June 28, 1922
- Born December 18, 1890
- Shown demonstrating his 3 tube super regenerative design
- Also invented regenerative
 Receiver, patented circa 1914
- Also invented the superhet,

patented circa 1918

- Held 42 patents
- Patent stolen by Lucian Leve
- Died from suicide, January 1954

Strange and Unusual Transistor Circuits

FFT Window Function Super-Regenerative Detector for 50 MHz using a N-JFET

Ian Scott ZL4NJ, 22 April, 2016

This super-regenerative receiver starts with a grounder gate RF amplifier-buffer followed by the detector and then Sallen-Key low pass filter. THe RF input level is set to -120 dBm (0.224 uV RMS). Although the AM modulation index is very high (80%), this sensitivity is exceptional for a simple one transistor detector!

This sub circuit generates AM at 50 Mhz, -120 dBm @ 80% modulation

JFET RF amplifier buffer, grounded gate → isolation Super-regenerative detector using JFET in simple Collpts. C7, R5 set **F**_{quench} Sallen-Key third order low pass filter – removes quench frequency. $F_{quench} \sim 35 \text{ kHz}$

Perhaps a modern day 3-transistor version would look like this?

Strange and Unusual Transistor Circuits

- Ultra-linear thermally compensated active buffer RF detector using two SiGe BJT
- BFP842 FT ~ 70GHz. Simulation at 2GHz. Detection sensitivity down to -50dBm
- Upper frequency range TBD. Maximum input power limited by supply Vs,~+13dBm

A close relative to the "crystal set" radio – its precursor was

Strange and Unusual Transistor Circuits

- Ultra-linear thermally compensated passive buffered RF detector using two diodes
- Simulation at 500MHz. Detection sensitivity down to -50dBm. **Note** R1 linearity
- Upper frequency range TBD. Maximum input power up to 10 Watts (+40dBm) / 50Ω

That's some RF detection – how about amplification?

LNA Using 70 Ghz SiGe BJT. These don't need impedance matching for excelent noise figure, e.g. NF < 1 dB at F = 8 GHz. Note – most microwave LNA devices use low voltage

Strange and Unusual Transistor Circuits

- 3 Stage cascaded HF UHF amplifier, NF ~ 2 dB
- Uses SiGe broadband "MMIC" devices, 17 dB gain
- These use simple BJT "Darlington" configuration

OK – this is only weak signal amplification so far – but where is the RF power?

Strange and Unusual Transistor Circuits

Single ended linear RFPA for SSB on 80 meters. This uses a D44H11 "switching" BJT (60 V, 10 Amp, FT = 60MHz in sandard TO-220 case).

This RFPA is drawn in Microcap 11 – could it be simulated with this 2-tone stimulus?

Strange and Unusual Transistor Circuits

Top waveform – supply current variation with RF envelope Middle waveform – collector voltage – note heavy saturation! Lower waveform – envelope is now smooth and symmetrical due to N=4 low pass output matching network, $V_{peak} \sim 43$ Volts \rightarrow PEP = 43² / (2 x 50) = 18.5 Watts

Strange and Unusual Transistor Circuits

Fast Fourier Transform (FFT) spectrum from time domain data

But can you believe it? Or even does this question even make sense?

Strange and Unusual Transistor Circuits

Aside – <u>Why use computer simulation?</u>

- Provides a "sneak preview" for circuit or system behaviour
- Weeds out designs that would perform poorly
- Educational tool illuminates circuit behavior
- Many simulation tools are free for educational use
- Expensive test equipment is avoided

Note – successful simulation results do not guarantee successful physical outcomes but poor simulation results guarantee poor physical results!

Note also, Agilent' "ADS simulation suite" costs a couple of million \$ Companies don't waste money on items that don't return!

Strange and Unusual Transistor Circuits

Push-pull transformer coupled BJT RFPA, biased for class AB (Q2) – this provides thermal feedback to stabilize operating point. Now let's see the time domain plots

Strange and Unusual Transistor Circuits

Top plot – RF output voltage waveform, 20 $V_{peak} \rightarrow PEP = 20^2 / (2 \times 50) = 4.0$ Watts Middle plot – supply current variation with 2-tone envelope Lower plot – Voltage waveform at collector – note symmetry, forced by output center-tapped transformer

Strange and Unusual Transistor Circuits

Output spectrum using FFT

RF BJT are the persona-non-grate in RFPA design circles these days. The new kids on the block are LDMOS devices!

Strange and Unusual Transistor Circuits

- Simple LDMOS RF Power Amplifier
- High-pass, low pass input matching network
- Series R-C gate stability network (essential)
- Two section "Mathhaei" output match

Strange and Unusual Transistor Circuits

50 Watt VHF RF Power Amplifier using MRF1550 LDMOS Device

This topology is typical for all single ended LDMOS RFPA – lumped elements components are replaced with PCB micro-stripline at higher frequency and RF power

That's enough RF power for now – what about oscillators?

Strange and Unusual Transistor Circuits

Demonstration RF Voltage Controlled Oscillator (VCO) Simulation File by Ian Scott, 18 August 2013

Open loop (AC) and closed loop (Transient) analysis options are available (Switch2). Enhanced FFT Spectral analysis is provided by using a "Window Function" on the time domain data (V5, NF / E2). Two windows are used, data in the first window is ignored as this corresponds to start up oscillations. The second window processes signals once stable, steady state operation is achieved.

Common collector BJT "Colpitts" oscillator (from Edwin H. Colpitts) using a BFR193 "Arsenic implanted interdigitated emitter" NPN. This can be divided by 4 to get 5.5 MHz

Strange and Unusual Transistor Circuits

Demonstration RF Voltage Controlled Oscillator (VCO) Simulation File by Ian Scott, 17 August 2013

Open loop (AC) and closed loop (Transient) analysis options are available (Switch2). Enhanced FFT Spectral analysis is provided by using a "Window Function" on the time domain data (V4, NF / E2). Two windows are used, data in the first window is ignored as this corresponds to start up oscillations. The second window processes signals once stable, steady state operation is achieved.

Common source JFET "Colpitts" oscillator using a J310 "generic" device, also centered at 21.2 MHz. All oscillator configurations are "topologically equivalent" and perform the same!

Oscillator devices run in class C and therefore always produce harmonics as we will see...

Strange and Unusual Transistor Circuits

This FFT plot shows a succession of harmonics but quite well filtered due to "Q" - but what of the "phase noise"much closer in?

Strange and Unusual Transistor Circuits

An oscillator can be represented as broad band spectral noise multiplied by a tuned circuit response - "Q multiplied" by positive feedback.

What can an oscillator be used for ?

Strange and Unusual Transistor Circuits

Single dual gate MOSFET Superhet Receiver – seems like some amateur found a use!

Bipolar Junction Transistor BJT Useful Internet Sites

Component Suppliers

http://www.digikey.co.nz/product-search/en http://nz.mouser.com/Electronic-Components/ http://nz.rs-online.com/web/ http://nz.element14.com/

Useful Free Software Downloads

https://www.libreoffice.org/ https://inkscape.org/en/download/ http://www.spectrum-soft.com/demo.shtm http://www.linear.com/designtools/software/ http://qucs.sourceforge.net/ https://www.expresspcb.com/free-cad-software/ https://www.expresspcb.com/free-cad-software/ http://www.sillanumsoft.org/download.htm http://www.basic256.org/index_en http://www.scilab.org/ https://www.gnu.org/software/octave/

Linux OS

http://www.ubuntu.com/ https://www.linuxmint.com/ https://getfedora.org/ https://www.debian.org/

Virtualization Software

https://www.virtualbox.org/

Summary – Topics Covered

- BJT History germanium point contact transistor, BJT, migration to silicon, high frequency improvements
- BJT dynamic behaviour, current controlled model, h parameters, frequency limitations, noise characteristics
- Strange and interesting BJT circuits

Any Final Questions or Comments?