...on the rationalisation, design, optimisation and synthesis of novel phosphonium derived anti-cancer drugs
![]() |
Establishing Anti-Cancer Phosphonium Salt Structure-activity RelationshipsReferencesby Phil |
- Registrations of cancer diagnosed in 2008, England, 2008, Office for National Statistics, pp19
- Gottesman, M., Mechanisms of Cancer Drug Resistance, 2002, 53, 615-627
- Rothenberg, M., Carbone, D., Johnson, D., Improving the evaluation of new cancer treatments: challenges and opportunities, Nat. Rev. Cancer, 2003, 3, 303-309
- Porteous C., Logan A., Evans C., Ledgerwood E., Menon D., Aigbirhio F., Smith R., Murphy M., Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes, Biochimica et Biophysica Acta, 2010, 1800, 1009–1017
- Maercker, A., The Wittig Reaction, Organic Reactions, 2011, 270-490
- Rideout D., Catogeropoulou, T., Jaworski, J., Dagnino R., McCarthy M., Phosphonium salts exhibiting selective anti-carcinoma activity in vitro, Anti-Cancer Drug Des., 1989, 4(4), 265-280
- Dickinson, B., Chang, C., A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells, J. Am. Chem. Soc., 2008, 130(30), 9638-9639
- Burt, C., Cohen, S., Barany, M., Analysis of Intact Tissue with 31P NMR, Ann. Rev. Biophys. Bioeng., 1979, 8, 1-12
- Armstrong J., Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease, Br. J. Pharmacol., 2007, 151(8), 1154–1165
- Trapp, S., Horobin, R., A predictive model for the selective accumulation of chemicals in tumor cells, Eu. Biophys. J., 2005, 34(7), 959-966
- Scaduto, R., Grotyohann, L., Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives, Biophys. J., 1999, 76(1), 469-477
- Chen, L., Mitochondrial Membrane Potential in Living Cells, Ann. Rev. Cell Bio., 1988, 4, 155-81
- Rideout, D., Bustamante, A., Patel, J., Mechanism of inhibition of fadu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride, Int. J. Cancer., 1994, 57(2), 247-253
- Herrmann J., Ups delivery to the intermembrane space of mitochondria: a novel affinity-driven protein import pathway, EMBO J., 2010, 29(17), 2859 - 2860
- Alberts B., Johnson A., Lewis J., Internal organisation of the cell. In: Molecular Biology of the Cell, 4th edn, 2002, Garland Publishing, New York and London.
- Sjöstrand F., Electron microscopy of mitochondria and cytoplasmic double membranes: ultra-structure of rod-shaped mitochondria, Nature, 1953, 171(4340), 30-31
- Mannella C., Structure and dynamics of the mitochondrial inner membrane cristae, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006, 1763(5-6), 542-548
- Saraste, M., Oxidative Phosphorylation at the fin de siècle, Science, 1999, 283(5407), 1488-1493
- Boyer, P., The ATP synthase--a splendid molecular machine, Ann. Rev. Biochem., 1997, 66, 717-749
- Armstrong, J., Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease, Br. J. Pharmacol., 2009, 151(8), 1154-1165
- Modica-Napolitano, J., Mitochondria as targets for detection and treatment of cancer, Expert Rev. Mol. Med., 2002, 4(9), 1-19
- Schagger, H., Respiratory chain supercomplexes of mitochondria and bacteria, Biochim. Biophys. Acta – Bioenergetics, 2002, 1555(1-3), 154-159
- Frey, T., Mannella, C., The internal structure of mitochondria, Trends Biochem. Sci., 2000, 25(7), 319-324
- Porter, M., Berdanier, C., Oxidative Phosphorylation: Key to Life, Diabetes Tech. Therapeutics, 2002, 4(2), 253-254
- Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y., Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state, J. Membrane Bio., 1979, 49, 105-121
- Murphy M., Slip and leak in mitochondrial oxidative phosphorylation, Biochim. Biophys. Acta, 1989, 997, 123
- Modica-Napolitano J., Singh K., Mitochondrial dysfunction in cancer, Mitochondrion, 2004, 4, 755
- Kim Y., Yang C., Wang J., Wang L., Li Z., Chen X., Liu S., Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations. Med. Chem., 2008, 51(10), 2971–2984
- Wang J., Yang C., Kim Y., Sreerama S., Cao Q., Li Z., He Z., Chen X., Liu S., 64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents, J. Med. Chem., 2007, 18(21), 5057–5069
- Kim, J., He, L., Lemasters, J., Mitochondrial permeability transition: a common pathway to necrosis and apoptosis, Biochem. Biophys. Res. Comm., 2003, 304, 463-470
- Henry-Mowatt, J., Dive, C., Martinou, J., James, D., Role of mitochondrial membrane permeabilization in apoptosis and cancer, Oncogene, 2004, 23, 2850-2860
- Zamzami, N., Marchetti, P., Castedo, M., et. al., Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death., J. Exp. Med., 1995, 182(2), 367-377
- Waterhouse, N., Goldstein, J., et. al., Cytochrome C Maintains Mitochondrial Transmembrane Potential and Atp Generation after Outer Mitochondrial Membrane Permeabilization during the Apoptotic Process, J. Cell. Bio., 2001, 153(2), 319-328
- Ly, J., Grubb, D., Lawen, A., The mitochondrial membrane potential (Δψm) in apoptosis; an update, Apoptosis, 2003, 8, 115-128
- Desagher, S., Martinou, J., Mitochondria as the central control point of apoptosis, Trends Cell Bio., 2000, 10(9), 369-377
- Bakeeva, L., Grinius, L., Jasaitis, A., et. al., Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria, Biochim. Biophys. Acta Bioenergetics, 1970, 216(1), 13-21
- Chizmadzhev, Y., Single membrane in electric field, Bioelectrochemistry of membranes, edited by Walz, D., Teissie, J., USA, 2004, 1-21
- Ibid, 21-40
- Weissig V., Torchilin V., Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems, Adv. Drug Delivery Rev., 2001, 49, 127
- Liberman E., Topali V., Tsofina L., Skulachev V., Mechanism of Coupling of Oxidative Phosphorylation and the Membrane Potential of Mitochondria, Nature, 1969, 222, 1076
- Skulachev, V., How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 2005, 57(4-5), 305-310.
- Murphy M., Smith R., Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 2007, 47, 629–656
- Min J., Biswal S., Deroose C., Gambhir S., Tetraphenylphosphonium as a novel molecular probe for imaging tumors. J. Nucl. Med., 2004, 45(4), 636–643.
- Modica-Napolitano J., Aprille J., Basis for the Selective Cytotoxicity of Rhodamine-123, Cancer Res., 1987, 47, 4361
- Fross, M., Prime, T., et. al., Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells, Biochem. J., 2008, 411, 633-645
- Brand M., Measurement of Mitochondrial Protonmotive Force in Bioenergetics – a Practical Approach (Brown, G.C., & Cooper, C.E., eds), 1995, pp. 39–62. IRL, Oxford.
- Garlid, K., Cation transport in mitochondria, Biochim. Biophys. Acta – Bioenergetics, 1996, 1275(1-2), 123-126
- Roux, B., Yu, H., Karplus, M., Molecular basis for the Born model of ion solvation, J. Phys. Chem., 1990, 90(11), 4683-4688
- Jayaram, B., Fine, R., Sharp, K., Honig, B., Free Energy Calculations of Ion Hydration: An Analysis of the Born Model in Terms of Microscopic Simulations, J. Phys. Chem., 1989, 93, 4320-4327
- Parsegian, V., Ion-membrane interactions as structural forces, Ann. N. Y. Acad. Sci., 2006, 264, 161-174
- Modica-Napolitano J., Aprille J., Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells, Adv. Drug Delivery. Rev., 2001, 49, 63
- Ono, A., Miyauchi, S., Demura, M., et. al., Activation Energy for Permeation of Phosphonium Cations through Phospholipid Bilayer Membrane, Biochemistry, 1994, 33(14), 4312-4318
- Yang, Q., Liu, X., et. al., Membrane Partitioning and Translocation of Hydrophobic Phosphonium Homologues: Thermodynamic Analysis by Immobilized Liposome Chromatography, J. Phys. Chem., 2000, 104(31), 7528-7534
- Marsh, D., Polarity and permeation profiles in lipid membranes, Proc. Natl. Acad. Sci. U.S.A. 2001, 98(14), 7777-7782
- Murphy M., Targeting bioactive compounds to mitochondria, Trends Biotechnol., 1997, 15, 326-330
- Luque-Ortega J., Reuther P., Rivas L., Dardonville C., New Benzophenone-Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria through Inhibition of Respiratory Complex II, J. Med. Chem., 2010, 53, 1788–1798
- Rotenberg S., Calogerpoulou T., Jaworski J., Weinstein B., Rideout D., A self-assembling protein kinase C inhibitor, Proc. Natl. Acad. Sci. USA, 1991, 88, 2490-2494
- Kalia, J., Raines, R., Hydrolytic Stability of Hydrazones and Oximes, Angewandte Chemie, 2008, 47, 7523-7526
- Severina I., Vyssokikh M., Pustovidko A., Simonyan R., Rokitskaya T., Skulachev V., Effects of lipophilic dications on planar bilayer phospholipid membrane and mitochondria, Biochimica et Biophysica Acta, 2007, 1767, 1164 – 1168
- McNaught A., Wilkinson A., Nic M., Jirat J., Kosata B., IUPAC. Compendium of Chemical Terminology, 2nd ed., Blackwell Scientific Publications, Oxford, 1997.
- Cao J., Zhao L., Jin S., Zhong R., Relationship between the molecular structure and the anticancer activity of N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosoureas: A theoretical investigation, International Journal of Quantum Chemistry, 2011, in print.
- Tetko I., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin A., Radchenko V., Zefirov S., Makarenko S., Tanchuk Y., Prokopenko V., Virtual computational chemistry laboratory - design and description, J. Comput. Aid. Mol. Des., 2005, 19, 453-63
- Kumar V., Malhotra S., Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids, Bioorg. Med. Chem. Lett., 2009, 19, 4643-4646
- Millard M., Neamati, N., Pathania D., Shabaik Y., Taheri L., Deng J., N., Preclinical Evaluation of Novel Triphenylphosphonium Salts with Broad-Spectrum Activity, PLoS ONE, 2010, 5(10), e13131
- Szabo A., Balog M., Mark L., Montsko G., Turi Z., Gallyas F., Sumegi B., Kalai T., Hideg K., Kovacs K., Induction of mitochondrial destabilization and necrotic cell death by apolar mitochondria-directed SOD mimetics, Mitochondrion, 2011, 11, 476–487
- Evans, R., The Rise of Azide–Alkyne 1,3-Dipolar 'Click' Cycloaddition and its Application to Polymer Science and Surface Modification, Au. J. of Chem., 2007, 60(6), 384–395.
- Kolb, C., Finn, G., Sharpless, K., Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Ange. Chem. Int. Ed., 2001, 40, 2004–2021.
- Boys, M., Downs, V., Preparation of Primary Thioamides From Nitriles Using Sodium Hydrogen Sulfide and Diethylamine Hydrochloride, Syn. Comm., 2006, 36(3), 295-298
- Malamas, M., Carlson, R., Grimes, D., Howell, R., Glaser, R., J. Med. Chem., 1996, 39(1), 237-245
- Gillespie, P., Goodnow, R., Kowalczyk, A., Le, H., Zhang, Q., Thiazoles as inhibitors of 11B-hydroxysteroid dehydrogenase, 2007, US Patent: US2007/167622 A1
- Goldfarb, Y., Gromova, G., Belenkii, L., Course of brimination of thiazole and 2-methylthiazole, Chem. Het. Comp., 1986, 22(6), 837-840
- Thiazole Pyrazolopyrimidines as CRF1 receptor antagonists, Eli Lilly and Company, 2008, US Patent: WO2008/36579 A1
- Ceulemans, E., Voets, M., Emmers, S., Uytterhoeven, K., Meervelt, L., Dehaen, W., Diastereoselective intramolecular hetero Diels-Alder approach toward polycyclic heterocycles, Tetrahedron, 2002, 58(3), 531-544
- Knight, R., Leeper, J., Synthesis of and Asymmetric Induction by Chiral Bicyclic Thiazolium Salts, Tet. Let., 1997, 38(20), 3611-3614
- Marcoux, D., Charette, A., Palladium-Catalyzed Synthesis of Functionalized Tetraaryl-phosphonium Salts, J. Org. Chem., 2008, 73(2), 590-593
- Stazi, F., Marcoux, D., Poupon, J., Latassa, D., Charette, A., Tetraarylphosphonium Salts as Soluble Supports for the Synthesis of Small Molecules, Ange. Chemie. Int. Ed., 2007, 46(26), 5011-5014
- Marcoux, David; Charette, Andre B., Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts, J. Org. Chem., 2008, 73(2), 590 - 593
- Shionogi and Company, Sulfonamide derivative having isoxazole ring, 2006, EU Patent: EP1650199 A1
- Pearson, D., Tour, J., Rapid Syntheses of Oligo(2,5-thiophene ethynylene)s with Thioester Termini: Potential Molecular Scale Wires with Alligator Clips, J. Org. Chem., 1997, 62(5), 1376-1387
- Roy, M., Poupon, J., Charette, A., Tetraarylphosphonium salts as soluble supports for oxidative catalysts and reagents, J. Org. Chem., 2009, 74(22), 8510-8515
- A. D. F. Toy, The Chemistry of Phosphorus, Pergamon Press, Oxford, UK, 1973.
- Coulombel, Lydie; Weiwer, Michel; Dunach, Elisabet, Aluminium triflate catalysed cyclisation of unsaturated alcohols: novel synthesis of rose oxide and analogues, Eu. J. Org. Chem., 2009, 33, 5788 - 5795
- Dilger, J., McLaughlin, S., McIntosh, T., Simon, S., The dielectric constant of phospholipid bilayers and the permeability of membranes to ions, Science, 1979, 7(206), 1196-1198
Previous: Appendix