...on the rationalisation, design, optimisation and synthesis of novel phosphonium derived anti-cancer drugs

Establishing Anti-Cancer Phosphonium Salt Structure-activity Relationships

References

by Phil

  1. Registrations of cancer diagnosed in 2008, England, 2008, Office for National Statistics, pp19
  2. Gottesman, M., Mechanisms of Cancer Drug Resistance, 2002, 53, 615-627
  3. Rothenberg, M., Carbone, D., Johnson, D., Improving the evaluation of new cancer treatments: challenges and opportunities, Nat. Rev. Cancer, 2003, 3, 303-309
  4. Porteous C., Logan A., Evans C., Ledgerwood E., Menon D., Aigbirhio F., Smith R., Murphy M., Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes, Biochimica et Biophysica Acta, 2010, 1800, 1009–1017
  5. Maercker, A., The Wittig Reaction, Organic Reactions, 2011, 270-490
  6. Rideout D., Catogeropoulou, T., Jaworski, J., Dagnino R., McCarthy M., Phosphonium salts exhibiting selective anti-carcinoma activity in vitro, Anti-Cancer Drug Des., 1989, 4(4), 265-280
  7. Dickinson, B., Chang, C., A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells, J. Am. Chem. Soc., 2008, 130(30), 9638-9639
  8. Burt, C., Cohen, S., Barany, M., Analysis of Intact Tissue with 31P NMR, Ann. Rev. Biophys. Bioeng., 1979, 8, 1-12
  9. Armstrong J., Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease, Br. J. Pharmacol., 2007, 151(8), 1154–1165
  10. Trapp, S., Horobin, R., A predictive model for the selective accumulation of chemicals in tumor cells, Eu. Biophys. J., 2005, 34(7), 959-966
  11. Scaduto, R., Grotyohann, L., Measurement of Mitochondrial Membrane Potential Using Fluorescent Rhodamine Derivatives, Biophys. J., 1999, 76(1), 469-477
  12. Chen, L., Mitochondrial Membrane Potential in Living Cells, Ann. Rev. Cell Bio., 1988, 4, 155-81
  13. Rideout, D., Bustamante, A., Patel, J., Mechanism of inhibition of fadu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride, Int. J. Cancer., 1994, 57(2), 247-253
  14. Herrmann J., Ups delivery to the intermembrane space of mitochondria: a novel affinity-driven protein import pathway, EMBO J., 2010, 29(17), 2859 - 2860
  15. Alberts B., Johnson A., Lewis J., Internal organisation of the cell. In: Molecular Biology of the Cell, 4th edn, 2002, Garland Publishing, New York and London.
  16. Sjöstrand F., Electron microscopy of mitochondria and cytoplasmic double membranes: ultra-structure of rod-shaped mitochondria, Nature, 1953, 171(4340), 30-31
  17. Mannella C., Structure and dynamics of the mitochondrial inner membrane cristae, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006, 1763(5-6), 542-548
  18. Saraste, M., Oxidative Phosphorylation at the fin de siècle, Science, 1999, 283(5407), 1488-1493
  19. Boyer, P., The ATP synthase--a splendid molecular machine, Ann. Rev. Biochem., 1997, 66, 717-749
  20. Armstrong, J., Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease, Br. J. Pharmacol., 2009, 151(8), 1154-1165
  21. Modica-Napolitano, J., Mitochondria as targets for detection and treatment of cancer, Expert Rev. Mol. Med., 2002, 4(9), 1-19
  22. Schagger, H., Respiratory chain supercomplexes of mitochondria and bacteria, Biochim. Biophys. Acta – Bioenergetics, 2002, 1555(1-3), 154-159
  23. Frey, T., Mannella, C., The internal structure of mitochondria, Trends Biochem. Sci., 2000, 25(7), 319-324
  24. Porter, M., Berdanier, C., Oxidative Phosphorylation: Key to Life, Diabetes Tech. Therapeutics, 2002, 4(2), 253-254
  25. Kamo, N., Muratsugu, M., Hongoh, R., Kobatake, Y., Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state, J. Membrane Bio., 1979, 49, 105-121
  26. Murphy M., Slip and leak in mitochondrial oxidative phosphorylation, Biochim. Biophys. Acta, 1989, 997, 123
  27. Modica-Napolitano J., Singh K., Mitochondrial dysfunction in cancer, Mitochondrion, 2004, 4, 755
  28. Kim Y., Yang C., Wang J., Wang L., Li Z., Chen X., Liu S., Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations. Med. Chem., 2008, 51(10), 2971–2984
  29. Wang J., Yang C., Kim Y., Sreerama S., Cao Q., Li Z., He Z., Chen X., Liu S., 64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents, J. Med. Chem., 2007, 18(21), 5057–5069
  30. Kim, J., He, L., Lemasters, J., Mitochondrial permeability transition: a common pathway to necrosis and apoptosis, Biochem. Biophys. Res. Comm., 2003, 304, 463-470
  31. Henry-Mowatt, J., Dive, C., Martinou, J., James, D., Role of mitochondrial membrane permeabilization in apoptosis and cancer, Oncogene, 2004, 23, 2850-2860
  32. Zamzami, N., Marchetti, P., Castedo, M., et. al., Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death., J. Exp. Med., 1995, 182(2), 367-377
  33. Waterhouse, N., Goldstein, J., et. al., Cytochrome C Maintains Mitochondrial Transmembrane Potential and Atp Generation after Outer Mitochondrial Membrane Permeabilization during the Apoptotic Process, J. Cell. Bio., 2001, 153(2), 319-328
  34. Ly, J., Grubb, D., Lawen, A., The mitochondrial membrane potential (Δψm) in apoptosis; an update, Apoptosis, 2003, 8, 115-128
  35. Desagher, S., Martinou, J., Mitochondria as the central control point of apoptosis, Trends Cell Bio., 2000, 10(9), 369-377
  36. Bakeeva, L., Grinius, L., Jasaitis, A., et. al., Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria, Biochim. Biophys. Acta Bioenergetics, 1970, 216(1), 13-21
  37. Chizmadzhev, Y., Single membrane in electric field, Bioelectrochemistry of membranes, edited by Walz, D., Teissie, J., USA, 2004, 1-21
  38. Ibid, 21-40
  39. Weissig V., Torchilin V., Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems, Adv. Drug Delivery Rev., 2001, 49, 127
  40. Liberman E., Topali V., Tsofina L., Skulachev V., Mechanism of Coupling of Oxidative Phosphorylation and the Membrane Potential of Mitochondria, Nature, 1969, 222, 1076
  41. Skulachev, V., How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers, IUBMB Life, 2005, 57(4-5), 305-310.
  42. Murphy M., Smith R., Targeting antioxidants to mitochondria by conjugation to lipophilic cations, Annu. Rev. Pharmacol. Toxicol., 2007, 47, 629–656
  43. Min J., Biswal S., Deroose C., Gambhir S., Tetraphenylphosphonium as a novel molecular probe for imaging tumors. J. Nucl. Med., 2004, 45(4), 636–643.
  44. Modica-Napolitano J., Aprille J., Basis for the Selective Cytotoxicity of Rhodamine-123, Cancer Res., 1987, 47, 4361
  45. Fross, M., Prime, T., et. al., Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells, Biochem. J., 2008, 411, 633-645
  46. Brand M., Measurement of Mitochondrial Protonmotive Force in Bioenergetics – a Practical Approach (Brown, G.C., & Cooper, C.E., eds), 1995, pp. 39–62. IRL, Oxford.
  47. Garlid, K., Cation transport in mitochondria, Biochim. Biophys. Acta – Bioenergetics, 1996, 1275(1-2), 123-126
  48. Roux, B., Yu, H., Karplus, M., Molecular basis for the Born model of ion solvation, J. Phys. Chem., 1990, 90(11), 4683-4688
  49. Jayaram, B., Fine, R., Sharp, K., Honig, B., Free Energy Calculations of Ion Hydration: An Analysis of the Born Model in Terms of Microscopic Simulations, J. Phys. Chem., 1989, 93, 4320-4327
  50. Parsegian, V., Ion-membrane interactions as structural forces, Ann. N. Y. Acad. Sci., 2006, 264, 161-174
  51. Modica-Napolitano J., Aprille J., Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells, Adv. Drug Delivery. Rev., 2001, 49, 63
  52. Ono, A., Miyauchi, S., Demura, M., et. al., Activation Energy for Permeation of Phosphonium Cations through Phospholipid Bilayer Membrane, Biochemistry, 1994, 33(14), 4312-4318
  53. Yang, Q., Liu, X., et. al., Membrane Partitioning and Translocation of Hydrophobic Phosphonium Homologues: Thermodynamic Analysis by Immobilized Liposome Chromatography, J. Phys. Chem., 2000, 104(31), 7528-7534
  54. Marsh, D., Polarity and permeation profiles in lipid membranes, Proc. Natl. Acad. Sci. U.S.A. 2001, 98(14), 7777-7782
  55. Murphy M., Targeting bioactive compounds to mitochondria, Trends Biotechnol., 1997, 15, 326-330
  56. Luque-Ortega J., Reuther P., Rivas L., Dardonville C., New Benzophenone-Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria through Inhibition of Respiratory Complex II, J. Med. Chem., 2010, 53, 1788–1798
  57. Rotenberg S., Calogerpoulou T., Jaworski J., Weinstein B., Rideout D., A self-assembling protein kinase C inhibitor, Proc. Natl. Acad. Sci. USA, 1991, 88, 2490-2494
  58. Kalia, J., Raines, R., Hydrolytic Stability of Hydrazones and Oximes, Angewandte Chemie, 2008, 47, 7523-7526
  59. Severina I., Vyssokikh M., Pustovidko A., Simonyan R., Rokitskaya T., Skulachev V., Effects of lipophilic dications on planar bilayer phospholipid membrane and mitochondria, Biochimica et Biophysica Acta, 2007, 1767, 1164 – 1168
  60. McNaught A., Wilkinson A., Nic M., Jirat J., Kosata B., IUPAC. Compendium of Chemical Terminology, 2nd ed., Blackwell Scientific Publications, Oxford, 1997.
  61. Cao J., Zhao L., Jin S., Zhong R., Relationship between the molecular structure and the anticancer activity of N-(2-chloroethyl)-N′-cyclohexyl-N-nitrosoureas: A theoretical investigation, International Journal of Quantum Chemistry, 2011, in print.
  62. Tetko I., Gasteiger J., Todeschini R., Mauri A., Livingstone D., Ertl P., Palyulin A., Radchenko V., Zefirov S., Makarenko S., Tanchuk Y., Prokopenko V., Virtual computational chemistry laboratory - design and description, J. Comput. Aid. Mol. Des., 2005, 19, 453-63
  63. Kumar V., Malhotra S., Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids, Bioorg. Med. Chem. Lett., 2009, 19, 4643-4646
  64. Millard M., Neamati, N., Pathania D., Shabaik Y., Taheri L., Deng J., N., Preclinical Evaluation of Novel Triphenylphosphonium Salts with Broad-Spectrum Activity, PLoS ONE, 2010, 5(10), e13131
  65. Szabo A., Balog M., Mark L., Montsko G., Turi Z., Gallyas F., Sumegi B., Kalai T., Hideg K., Kovacs K., Induction of mitochondrial destabilization and necrotic cell death by apolar mitochondria-directed SOD mimetics, Mitochondrion, 2011, 11, 476–487
  66. Evans, R., The Rise of Azide–Alkyne 1,3-Dipolar 'Click' Cycloaddition and its Application to Polymer Science and Surface Modification, Au. J. of Chem., 2007, 60(6), 384–395.
  67. Kolb, C., Finn, G., Sharpless, K., Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Ange. Chem. Int. Ed., 2001, 40, 2004–2021.
  68. Boys, M., Downs, V., Preparation of Primary Thioamides From Nitriles Using Sodium Hydrogen Sulfide and Diethylamine Hydrochloride, Syn. Comm., 2006, 36(3), 295-298
  69. Malamas, M., Carlson, R., Grimes, D., Howell, R., Glaser, R., J. Med. Chem., 1996, 39(1), 237-245
  70. Gillespie, P., Goodnow, R., Kowalczyk, A., Le, H., Zhang, Q., Thiazoles as inhibitors of 11B-hydroxysteroid dehydrogenase, 2007, US Patent: US2007/167622 A1
  71. Goldfarb, Y., Gromova, G., Belenkii, L., Course of brimination of thiazole and 2-methylthiazole, Chem. Het. Comp., 1986, 22(6), 837-840
  72. Thiazole Pyrazolopyrimidines as CRF1 receptor antagonists, Eli Lilly and Company, 2008, US Patent: WO2008/36579 A1
  73. Ceulemans, E., Voets, M., Emmers, S., Uytterhoeven, K., Meervelt, L., Dehaen, W., Diastereoselective intramolecular hetero Diels-Alder approach toward polycyclic heterocycles, Tetrahedron, 2002, 58(3), 531-544
  74. Knight, R., Leeper, J., Synthesis of and Asymmetric Induction by Chiral Bicyclic Thiazolium Salts, Tet. Let., 1997, 38(20), 3611-3614
  75. Marcoux, D., Charette, A., Palladium-Catalyzed Synthesis of Functionalized Tetraaryl-phosphonium Salts, J. Org. Chem., 2008, 73(2), 590-593
  76. Stazi, F., Marcoux, D., Poupon, J., Latassa, D., Charette, A., Tetraarylphosphonium Salts as Soluble Supports for the Synthesis of Small Molecules, Ange. Chemie. Int. Ed., 2007, 46(26), 5011-5014
  77. Marcoux, David; Charette, Andre B., Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts, J. Org. Chem., 2008, 73(2), 590 - 593
  78. Shionogi and Company, Sulfonamide derivative having isoxazole ring, 2006, EU Patent: EP1650199 A1
  79. Pearson, D., Tour, J., Rapid Syntheses of Oligo(2,5-thiophene ethynylene)s with Thioester Termini: Potential Molecular Scale Wires with Alligator Clips, J. Org. Chem., 1997, 62(5), 1376-1387
  80. Roy, M., Poupon, J., Charette, A., Tetraarylphosphonium salts as soluble supports for oxidative catalysts and reagents, J. Org. Chem., 2009, 74(22), 8510-8515
  81. A. D. F. Toy, The Chemistry of Phosphorus, Pergamon Press, Oxford, UK, 1973.
  82. Coulombel, Lydie; Weiwer, Michel; Dunach, Elisabet, Aluminium triflate catalysed cyclisation of unsaturated alcohols: novel synthesis of rose oxide and analogues, Eu. J. Org. Chem., 2009, 33, 5788 - 5795
  83. Dilger, J., McLaughlin, S., McIntosh, T., Simon, S., The dielectric constant of phospholipid bilayers and the permeability of membranes to ions, Science, 1979, 7(206), 1196-1198

Previous: Appendix